1. 程式人生 > >【Derivation】MarkDown Letex編碼 之 正態分佈特徵函式證明

【Derivation】MarkDown Letex編碼 之 正態分佈特徵函式證明

**求證:$\varphi(u)=e^{jau-\frac{1}{2}u^2\sigma^2} \ \ \ , t\in R $**  
**證:**
  
* *   $$\varphi(u)=\int _ {-\infty} ^ {+\infty} e^{jux}f(x)dx$$   $$=\int_ {-\infty}^{+\infty} e^{jux} \frac{1}{\sqrt{2\pi\sigma^2}}  e^{- \frac{(x-a)^2}{2\sigma^2}}dx$$
* 整理,得:
* $$\varphi(u)= \frac{1}{\sqrt{2\pi\sigma^2}}\int _ {-\infty} ^ {+\infty} e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}dx $$
* * beacuse $|jx  e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}| \leq |x| e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}$ and $ \frac{1}{\sqrt{2\pi}}|x| e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}} < +\infty$ , $so $可以對$\varphi(u)$求$u$的一階導數,
* 有:  $$\varphi \prime(u)= \frac{1}{\sqrt{2\pi\sigma^2}}\int _ {-\infty} ^ {+\infty} {jx}\ e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}dx   $$
綜合可推:
 $$j{(u-j\frac{a}{\sigma^2})\varphi (u)}+\frac{j{\varphi \prime(u) } } {\sigma^2} $$$$=$$ $$ \frac{1}{\sqrt{2\pi\sigma^2}}\int _ {-\infty} ^ {+\infty} { ( ju-\frac{x-a}{\sigma^2} })\ e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}dx  =$$$$  \frac{1}{\sqrt{2\pi\sigma^2}}\int _ {-\infty} ^ {+\infty} { ( ju-\frac{x-a}{\sigma^2} })\ e^{jux- \frac{(x-a)^2}{2\sigma^2}}dx $$ $$=\frac{1}{\sqrt{2\pi\sigma^2}}\int _ {-\infty} ^ {+\infty} 1de^{jux- \frac{(x-a)^2}{2\sigma^2}} $$$$=\frac{1}{\sqrt{2\pi\sigma^2}}[e^{jux- \frac{(x-a)^2}{2\sigma^2}}]|_{-\infty}^{+\infty}=0$$
即得微分方程
$${u\varphi (u)-j\frac{a}{\sigma^2}\varphi (u)}+\frac{{\varphi \prime(u) } } {\sigma^2}=$$

$${(u\sigma^2 -ja)}{\varphi (u)}+{\varphi \prime(u) } =0$$
即得微分方程
++++分水嶺,從後往前推+++++++
$${\varphi (u)}+\frac{{\varphi \prime(u) } } {u\sigma^2 -ja} $$
$$={u\varphi (u)}+\frac{{\varphi \prime(u) } } {\sigma^2 -\frac{ja}{u}}=0 $$

求解:
$$\frac{\varphi\prime(u)}{\varphi(u)}=-u\sigma^2+ja$$


解得:$$\ln\varphi (u)=-\frac{1}{2}u^2D(x)+jau+C$$
進一步化簡:
$$\varphi (u)=e^Ce^{-\frac{1}{2}u^2D(x)+jau}$$




令$u=0,e^C=\varphi(0)=E[E^(j0X)]=E[e^0]=1$,故$C=0;$

代入通解為:
$$\varphi (u)=e^{jau-\frac{1}{2}u^2D(x)}$$
由以上推導,**正態分佈特徵函式表示式** 得證
**求證:$\varphi(u)=e^{jau-\frac{1}{2}u^2\sigma^2} \ \ \ , t\in R $**  
**證:**
  
* *   $$\varphi(u)=\int _ {-\infty} ^ {+\infty} e^{jux}f(x)dx$$   $$=\int_ {-\infty}^{+\infty} e^{jux} \frac{1}{\sqrt{2\pi\sigma^2}}  e^{- \frac{(x-a)^2}{2\sigma^2}}dx$$
* 整理,得:
* $$\varphi(u)= \frac{1}{\sqrt{2\pi\sigma^2}}\int _ {-\infty} ^ {+\infty} e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}dx $$
* * beacuse $|jx  e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}| \leq |x| e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}$ and $ \frac{1}{\sqrt{2\pi}}|x| e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}} < +\infty$ , $so $可以對$\varphi(u)$求$u$的一階導數,
* 有:  $$\varphi \prime(u)= \frac{1}{\sqrt{2\pi\sigma^2}}\int _ {-\infty} ^ {+\infty} {jx}\ e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}dx   $$
綜合可推:
 $$j{(u-j\frac{a}{\sigma^2})\varphi (u)}+\frac{j{\varphi \prime(u) } } {\sigma^2} $$$$=$$ $$ \frac{1}{\sqrt{2\pi\sigma^2}}\int _ {-\infty} ^ {+\infty} { ( ju-\frac{x-a}{\sigma^2} })\ e^{jux}   e^{- \frac{(x-a)^2}{2\sigma^2}}dx  =$$$$  \frac{1}{\sqrt{2\pi\sigma^2}}\int _ {-\infty} ^ {+\infty} { ( ju-\frac{x-a}{\sigma^2} })\ e^{jux- \frac{(x-a)^2}{2\sigma^2}}dx $$ $$=\frac{1}{\sqrt{2\pi\sigma^2}}\int _ {-\infty} ^ {+\infty} 1de^{jux- \frac{(x-a)^2}{2\sigma^2}} $$$$=\frac{1}{\sqrt{2\pi\sigma^2}}[e^{jux- \frac{(x-a)^2}{2\sigma^2}}]|_{-\infty}^{+\infty}=0$$
即得微分方程
$${u\varphi (u)-j\frac{a}{\sigma^2}\varphi (u)}+\frac{{\varphi \prime(u) } } {\sigma^2}=$$

$${(u\sigma^2 -ja)}{\varphi (u)}+{\varphi \prime(u) } =0$$
即得微分方程
++++分水嶺,從後往前推+++++++
$${\varphi (u)}+\frac{{\varphi \prime(u) } } {u\sigma^2 -ja} $$
$$={u\varphi (u)}+\frac{{\varphi \prime(u) } } {\sigma^2 -\frac{ja}{u}}=0 $$

求解:
$$\frac{\varphi\prime(u)}{\varphi(u)}=-u\sigma^2+ja$$


解得:$$\ln\varphi (u)=-\frac{1}{2}u^2D(x)+jau+C$$
進一步化簡:
$$\varphi (u)=e^Ce^{-\frac{1}{2}u^2D(x)+jau}$$




令$u=0,e^C=\varphi(0)=E[E^(j0X)]=E[e^0]=1$,故$C=0;$

代入通解為:
$$\varphi (u)=e^{jau-\frac{1}{2}u^2D(x)}$$
由以上推導,**正態分佈特徵函式表示式** 得證