1. 程式人生 > >牛頓迭代法計算平方根

牛頓迭代法計算平方根

 

突然看到這個古老的演算法,但是發現在影象渲染裡用處可真是不小,所以拿出來研究一番

牛頓迭代法(Newton's method)又稱為牛頓-拉夫遜方法(Newton-Raphson method),它是牛頓在17世紀提出的一種在實數域和複數域上近似求解方程的方法。多數方程不存在求根公式,因此求精確根非常困難,甚至不可能,從而尋找方程的近似根就顯得特別重要。方法使用函式f(x)的泰勒級數的前面幾項來尋找方程f(x) = 0的根。牛頓迭代法是求方程根的重要方法之一,其最大優點是在方程f(x) = 0的單根附近具有平方收斂,而且該法還可以用來求方程的重根、復根。另外該方法廣泛用於計算機程式設計中。

  設r是f(x) = 0的根,選取x0作為r初始近似值,過點(x0,f(x0))做曲線y = f(x)的切線L,L的方程為y = f(x0)+f'(x0)(x-x0),求出L與x軸交點的橫座標 x1 = x0-f(x0)/f'(x0),稱x1為r的一次近似值。過點(x1,f(x1))做曲線y = f(x)的切線,並求該切線與x軸交點的橫座標 x2 = x1-f(x1)/f'(x1),稱x2為r的二次近似值。重複以上過程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),稱為r的n+1次近似值,上式稱為牛頓迭代公式


  解非線性方程f(x)=0的牛頓法是把非線性方程線性化的一種近似方法。把f(x)在x0點附近展開成泰勒級數 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其線性部分,作為非線性方程f(x) = 0的近似方程,即泰勒展開的前兩項,則有f(x0)+f'(x0)(x-x0)=f(x)=0 設f'(x0)≠0則其解為x1=x0-f(x0)/f'(x0) 這樣,得到牛頓法的一個迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

以上摘自百度百科

牛頓迭代法用來算平方根

設某數為p,則有方程

f(x) = x^2-p

方程的0根即為所求數的平方根

根據牛頓迭代的原理,可以得到以下的迭代公式

X(n+1)=[X(n)+p/Xn]/2

一般性的程式設計方法如下

double sqr(double n) {
    double k=1.0;
    while(abs(k*k-n)>1e-9) {
        k=(k+n/k)/2;
    }
    return k;
}

解決更加複雜的方程可以利用泰勒展開式,取其線性部分迭代

PS:Quake III公開原始碼後,有人在game/code/q_math.c裡發現了這樣一段程式碼。它的作用是將一個數開平方並取倒,經測試這段程式碼比(float)(1.0/sqrt(x))快4倍,有興趣的可以研究一下

float Q_rsqrt( float number )
{
  long i;
  float x2, y;
  const float threehalfs = 1.5F;
  x2 = number * 0.5F;
  y  = number;
  i  = * ( long * ) &y;        
  i  = 0x5f3759df - ( i >> 1 ); 
  y  = * ( float * ) &i;
  y  = y * ( threehalfs - ( x2 * y * y ) ); 
  // y  = y * ( threehalfs - ( x2 * y * y ) ); 
  #ifndef Q3_VM
  #ifdef __linux__
    assert( !isnan(y) ); 
  #endif
  #endif
  return y;
}