Android小知識-剖析OkHttp中的五個攔截器(下篇)
本平臺的文章更新會有延遲,大家可以關注微信公眾號-顧林海,包括年底前會更新kotlin由淺入深系列教程,目前計劃在微信公眾號進行首發,如果大家想獲取最新教程,請關注微信公眾號,謝謝
在上一節介紹了快取攔截器CacheInterceptor的快取機制,內部採用DiskLruCache來快取資料,本節介紹剩下的兩個攔截器,分別是ConnectInterceptor和CallServerInterceptor攔截器。
ConnectInterceptor攔截器
ConnectInterceptor是網路連線攔截器,我們知道在OkHttp當中真正的網路請求都是通過攔截器鏈來實現的,通過依次執行這個攔截器鏈上不同功能的攔截器來完成資料的響應,ConnectInterceptor的作用就是開啟與伺服器之間的連線,正式開啟OkHttp的網路請求。
走進ConnectInterceptor的intercept方法:
@Override public Response intercept(Interceptor.Chain chain) throws IOException { RealInterceptorChain realChain = (RealInterceptorChain) chain; Request request = realChain.request(); //標記1 StreamAllocation streamAllocation = realChain.streamAllocation(); ... }
在標記1處可以看到從上一個攔截器中獲取StreamAllocation物件,在講解第一個攔截器RetryAndFollowUpInterceptor重試重定向的時候已經介紹過StreamAllocation,在RetryAndFollowUpInterceptor中只是建立了這個物件並沒有使用,真正使用它的是在ConnectInterceptor中,StreamAllocation是用來建立執行HTTP請求所需要的網路元件,既然我們拿到了StreamAllocation,接下來看這個StreamAllocation到底做了哪些操作。
@Override public Response intercept(Interceptor.Chain chain) throws IOException { ... //標記1 StreamAllocation streamAllocation = realChain.streamAllocation(); .. //標記2 HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks); ... }
在標記2處通過StreamAllocation物件的newStream方法建立了一個HttpCodec物件,HttpCodec的作用是用來編碼我們的Request以及解碼我們的Response。
@Override public Response intercept(Interceptor.Chain chain) throws IOException { ... //標記1 StreamAllocation streamAllocation = realChain.streamAllocation(); ... //標記2 HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks); //標記3 RealConnection connection = streamAllocation.connection(); ... }
在標記3處通過StreamAllocation物件的connection方法獲取到RealConnection物件,這個RealConnection物件是用來進行實際的網路IO傳輸的。
@Override public Response intercept(Interceptor.Chain chain) throws IOException { ... //標記1 StreamAllocation streamAllocation = realChain.streamAllocation(); ... //標記2 HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks); //標記3 RealConnection connection = streamAllocation.connection(); //標記4 return realChain.proceed(request, streamAllocation, httpCodec, connection); }
標記4處是我們非常熟悉的程式碼了,繼續呼叫攔截器鏈的下一個攔截器並將Request、StreamAllocation、HttpCodec以及RealConnection物件傳遞過去。
總結:
首先ConnectInterceptor攔截器從攔截器鏈獲取到前面傳遞過來的StreamAllocation,接著執行StreamAllocation的newStream方法建立HttpCodec,HttpCodec物件是用於處理我們的Request和Response。
最後將剛才建立的用於網路IO的RealConnection物件,以及對於伺服器互動最為關鍵的HttpCodec等物件傳遞給後面的攔截器。
從上面我們瞭解了ConnectInterceptor攔截器的intercept方法的整體流程,從前一個攔截器中獲取StreamAllocation物件,通過StreamAllocation物件的newStream方法建立了一個HttpCodec物件,我們看看這個newStream方法具體做了哪些操作。
public HttpCodec newStream( OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) { ... try { //標記1 RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis, connectionRetryEnabled, doExtensiveHealthChecks); HttpCodec resultCodec = resultConnection.newCodec(client, chain, this); ... } catch (IOException e) { throw new RouteException(e); } }
我們可以看到在標記1處建立了一個RealConnection物件,以及HttpCodec物件,這兩個物件在上面已經介紹過了,RealConnection物件是用來進行實際的網路IO傳輸的,HttpCodec是用來編碼我們的Request以及解碼我們的Response。
通過findHealthyConnection方法生成一個RealConnection物件,來進行實際的網路連線。
findHealthyConnection方法:
private RealConnection findHealthyConnection(int connectTimeout, int readTimeout, int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled, boolean doExtensiveHealthChecks) throws IOException { while (true) { RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis, connectionRetryEnabled); ... synchronized (connectionPool) { if (candidate.successCount == 0) { return candidate; } } ... return candidate; } }
在方法中開啟了while迴圈,內部的同步程式碼塊中判斷candidate的successCount如果等於0,說明整個網路連線結束並直接返回candidate,而這個candidate是通過同步程式碼塊上面的findConnection方法獲取的。
private RealConnection findHealthyConnection(int connectTimeout, int readTimeout, int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled, boolean doExtensiveHealthChecks) throws IOException { while (true) { RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis, connectionRetryEnabled); synchronized (connectionPool) { if (candidate.successCount == 0) { return candidate; } } //標記1 if (!candidate.isHealthy(doExtensiveHealthChecks)) { noNewStreams(); continue; } return candidate; } }
往下看標記1,這邊會判斷這個連線是否健康(比如Socket沒有關閉、或者它的輸入輸出流沒有關閉等等),如果不健康就呼叫noNewStreams方法從連線池中取出並銷燬,接著呼叫continue,繼續迴圈呼叫findConnection方法獲取RealConnection物件。
通過不停的迴圈呼叫findConnection方法來獲取RealConnection物件,接著看這個findConnection方法做了哪些操作。
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException { ... RealConnection result = null; Connection releasedConnection; ... synchronized (connectionPool) { ... //標記1 releasedConnection = this.connection; ... if (this.connection != null) { result = this.connection; releasedConnection = null; } ... } ... return result; }
在findConnection方法的標記1處,嘗試將connection賦值給releasedConnection,然後判斷這個connection能不能複用,如果能複用,就將connection賦值給result,最後返回這個複用的連線。如果不能複用,那麼result就為null,我們繼續往下看。
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException { ... RealConnection result = null; Connection releasedConnection; ... synchronized (connectionPool) { ... //標記1 ... //標記2 if (result == null) { Internal.instance.get(connectionPool, address, this, null); if (connection != null) { foundPooledConnection = true; result = connection; } else { selectedRoute = route; } } ... } ... return result; }
如果result為null說明不能複用這個connection,那麼就從連線池connectionPool中獲取一個實際的RealConnection並賦值給connection,接著判斷connection是否為空,不為空賦值給result。
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException { ... RealConnection result = null; Connection releasedConnection; ... synchronized (connectionPool) { ... //標記1 ... //標記2 if (result == null) { Internal.instance.get(connectionPool, address, this, null); if (connection != null) { foundPooledConnection = true; result = connection; } else { selectedRoute = route; } } ... } ... //標記3 result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis, connectionRetryEnabled, call, eventListener); ... return result; }
標記3處,拿到我們的RealConnection物件result之後,呼叫它的connect方法來進行實際的網路連線。
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException { ... RealConnection result = null; Connection releasedConnection; ... synchronized (connectionPool) { ... //標記1 ... //標記2 if (result == null) { Internal.instance.get(connectionPool, address, this, null); if (connection != null) { foundPooledConnection = true; result = connection; } else { selectedRoute = route; } } ... } ... //標記3 result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis, connectionRetryEnabled, call, eventListener); ... //標記4 Internal.instance.put(connectionPool, result); ... return result; }
在標記4處,進行真正的網路連線後,將連線成功後的RealConnection物件result放入connectionPool連線池,方便後面複用。
上面我們介紹了StreamAllocation物件的newStream方法的具體操作,接下來看看ConnectInterceptor攔截器中一個很重要的概念-連線池。
不管HTTP協議是1.1還是2.0,它們的Keep-Alive機制,或者2.0的多路複用機制在實現上都需要引入一個連線池的概念,來維護整個網路連線。OkHttp中將客戶端與服務端之間的連結抽象成一個Connection類,而RealConnection是它的實現類,為了管理所有的Connection,OkHttp提供了一個ConnectionPool這個類,它的主要作用就是在時間範圍內複用Connection。
接下來主要介紹它的get和put方法。
@Nullable RealConnection get(Address address, StreamAllocation streamAllocation, Route route) { assert (Thread.holdsLock(this)); for (RealConnection connection : connections) { if (connection.isEligible(address, route)) { streamAllocation.acquire(connection, true); return connection; } } return null; }
在get方法中遍歷連線池中的Connection,通過isEligible方法判斷Connection是否可用,如果可以使用就會呼叫streamAllocation的acquire方法來獲取所用的連線。
進入StreamAllocation的acquire方法:
public void acquire(RealConnection connection, boolean reportedAcquired) { assert (Thread.holdsLock(connectionPool)); if (this.connection != null) throw new IllegalStateException(); //標記1 this.connection = connection; this.reportedAcquired = reportedAcquired; //標記2 connection.allocations.add(new StreamAllocationReference(this, callStackTrace)); }
標記1處,從連線池中獲取的RealConnection物件賦值給StreamAllocation的成員變數connection。
標記2處,將StreamAllocation物件的弱引用新增到RealConnection的allocations集合中去,這樣做的用處是通過allocations集合的大小來判斷網路連線次數是否超過OkHttp指定的連線次數。
put方法:
void put(RealConnection connection) { assert (Thread.holdsLock(this)); if (!cleanupRunning) { cleanupRunning = true; executor.execute(cleanupRunnable); } connections.add(connection); }
put方法中在新增連線到連線池之前,會處理清理任務,做完清理任務後,將我們的connection新增到連線池中。
connection自動回收l利用了GC的回收演算法,當StreamAllocation數量為0時,會被執行緒池檢測到,然後進行回收,在ConnectionPool中有一個獨立的執行緒,它會開啟cleanupRunnable來清理連線池。
private final Runnable cleanupRunnable = new Runnable() { @Override public void run() { while (true) { //標記1 long waitNanos = cleanup(System.nanoTime()); if (waitNanos == -1) return; if (waitNanos > 0) { long waitMillis = waitNanos / 1000000L; waitNanos -= (waitMillis * 1000000L); synchronized (ConnectionPool.this) { try { //標記2 ConnectionPool.this.wait(waitMillis, (int) waitNanos); } catch (InterruptedException ignored) { } } } } } };
在run方法中是一個死迴圈,內部標記1處首次進行清理時,需要返回下次清理的間隔時間。標記2處呼叫了wait方法進行等待,等待釋放鎖和時間片,當等待時間過了之後會再次呼叫Runnable進行清理,同時返回下次要清理的間隔時間waitNanos。
標記2處的cleanup方法內部實現了具體的GC回收演算法,該演算法類似Java GC當中的標記清除演算法;cleanup方法迴圈標記出最不活躍的connection,通過響應的判斷來進行清理。
CallServerInterceptor攔截器
CallServerInterceptor攔截器主要作用是負責向伺服器發起真正的網路請求,並獲取返回結果。
CallServerInterceptor的intercept方法:
@Override public Response intercept(Chain chain) throws IOException { RealInterceptorChain realChain = (RealInterceptorChain) chain; HttpCodec httpCodec = realChain.httpStream(); StreamAllocation streamAllocation = realChain.streamAllocation(); RealConnection connection = (RealConnection) realChain.connection(); Request request = realChain.request(); ... }
intercept方法中先是獲取五個物件,下面分別介紹這5個物件的含義。
-
RealInterceptorChain:攔截器鏈,真正進行請求的地方。
-
HttpCodec:在OkHttp中,它把所有的流物件都封裝成了HttpCodec這個類,作用是編碼Request,解碼Response。
-
StreamAllocation:建立HTTP連線所需要的網路元件。
-
RealConnection:伺服器與客戶端的具體連線。
-
Request:網路請求。
@Override public Response intercept(Chain chain) throws IOException { RealInterceptorChain realChain = (RealInterceptorChain) chain; HttpCodec httpCodec = realChain.httpStream(); StreamAllocation streamAllocation = realChain.streamAllocation(); RealConnection connection = (RealConnection) realChain.connection(); Request request = realChain.request(); ... //標記1 httpCodec.finishRequest(); ... }
標記1處,呼叫httpCodec的finishRequest方法,表面網路請求的寫入工作已經完成,具體網路請求的寫入工作大家可以看原始碼,也就是標記1之上的程式碼。
網路請求的寫入工作完成後,接下來就進行網路請求的讀取工作。
@Override public Response intercept(Chain chain) throws IOException { RealInterceptorChain realChain = (RealInterceptorChain) chain; HttpCodec httpCodec = realChain.httpStream(); StreamAllocation streamAllocation = realChain.streamAllocation(); RealConnection connection = (RealConnection) realChain.connection(); Request request = realChain.request(); ... //網路請求一系列寫入工作 ... //向socket當中寫入請求的body資訊 request.body().writeTo(bufferedRequestBody); ... //標記1:寫入結束 httpCodec.finishRequest(); ... if (responseBuilder == null) { realChain.eventListener().responseHeadersStart(realChain.call()); //讀取網路寫入的頭部資訊 responseBuilder = httpCodec.readResponseHeaders(false); } Response response = responseBuilder .request(request) .handshake(streamAllocation.connection().handshake()) .sentRequestAtMillis(sentRequestMillis) .receivedResponseAtMillis(System.currentTimeMillis()) .build(); ... //讀取Response //標記1 response = response.newBuilder() .body(httpCodec.openResponseBody(response)) .build(); ... return response; }
我們只取核心程式碼標記1,通過httpCodec的openResponseBody方法獲取body,並通過build建立Response物件,最終返回Response物件。
到這裡OkHttp的同步和非同步請求、分發器,以及五個攔截器都已經介紹一邊了,怎麼說呢,OkHttp的原始碼實在太龐大了,要想全部理解需要花費很長時間,我只是整理出了OkHttp中幾個比較重要的概念,瞭解它的整體脈絡,這樣你才能有條理的分析它的原始碼。

838794-506ddad529df4cd4.webp.jpg
搜尋微信“顧林海”公眾號,定期推送優質文章。