1. 程式人生 > >黎曼和 Riemann Sum ,黎曼積分Riemann Integral,正態分佈normal distribution

黎曼和 Riemann Sum ,黎曼積分Riemann Integral,正態分佈normal distribution

       這裡有一塊形狀不規則的土地,要測量它的面積,怎麼辦呢?一個叫黎曼的德國數學家(Bernhard Riemann, 1826-1866),他想了個辦法:將這不規則圖形切成一條條的小長條兒,然後將這個長條近似的看成一個矩形,再分別測量出這些小矩形的長度,再計算出它們的面積,把所有矩型面積加起來就是這塊不規則地的面積。這就是著名的“黎曼和”。小長條寬度趨於0時,即為面積微分,各個面積求和取極限即為定積分。雖然牛頓時代就給出了定積分的定義,但是定積分的現代數學定義卻是用黎曼和的極限給出。

 黎曼積分

       也就是所說的正常積分、定積分。在實分析中,由

黎曼創立的黎曼積分首次對函式在給定區間上的積分給出了一個精確定義。黎曼積分在技術上的某些不足之處可由後來的黎曼-斯蒂爾傑斯積分勒貝格積分得到修補。

正態分佈:

正態分佈(Normal distribution),也稱“常態分佈”,又名高斯分佈(Gaussian distribution),最早由A.棣莫弗在求二項分佈的漸近公式中得到。C.F.高斯在研究測量誤差時從另一個角度匯出了它。P.S.拉普拉斯和高斯研究了它的性質。是一個在數學、物理及工程等領域都非常重要的概率分佈,在統計學的許多方面有著重大的影響力。

正態曲線呈鍾型,兩頭低,中間高,左右對稱因其曲線呈鐘形,因此人們又經常稱之為

鐘形曲線

隨機變數X服從一個數學期望為μ、方差為σ^2的正態分佈,記為N(μ,σ^2)。其概率密度函式為正態分佈的期望值μ決定了其位置,其標準差σ決定了分佈的幅度。當μ = 0,σ = 1時的正態分佈是標準正態分佈

一維正態分佈

    若隨機變數X服從一個位置引數為μ、尺度引數為σ,概率分佈,且其概率密度函式為:

則這個隨機變數就成為正太隨機變數,正太隨機變數服從的分佈就稱為正太分佈,記作,讀作X服從N(μ,σ²),或X服從正太分佈。

標準正態分佈

    當μ=0,σ=1時,正態分佈就成為標準正態分佈:

性質

圖形特徵

正態曲線的高峰位於正中央,即均數所在的位置。

對稱性:正態曲線以均數為中心,左右對稱,曲線兩端永遠不與橫軸相交。

均勻變動性:正態曲線均數所在處開始,分別向左右兩側逐漸均勻下降。

曲線與橫軸間的面積總等於1,相當於概率密度函式的函式從正無窮到負無窮積分的概率為1。即頻率的總和為100%。

引數含義

正態分佈有兩個引數,即期望(均數)μ和標準差σ,σ2為方差。