1. 程式人生 > >揭祕MOS管前世今生的發展歷程

揭祕MOS管前世今生的發展歷程

 

  1、溝道

  上面圖中,下邊的p型中間一個窄長條就是溝道,使得左右兩塊P型極連在一起,因此mos管導通後是電阻特性,因此它的一個重要引數就是導通電阻,選用mos管必須清楚這個引數是否符合需求。

       

  2、n型

  上圖表示的是p型MOS管,讀者可以依據此圖理解n型的,都是反過來即可。因此,不難理解,n型的如圖在柵極加正壓會導致導通,而p型的相反。

        

  3、增強型

  相對於耗盡型,增強型是通過“加厚”導電溝道的厚度來導通,如圖。柵極電壓越低,則p型源、漏極的正離子就越靠近中間,n襯底的負離子就越遠離柵極,柵極電壓達到一個值,叫閥值或坎壓時,由p型遊離出來的正離子連在一起,形成通道,就是圖示效果。因此,容易理解,柵極電壓必須低到一定程度才能導通,電壓越低,通道越厚,導通電阻越小。由於電場的強度與距離平方成正比,因此,電場強到一定程度之後,電壓下降引起的溝道加厚就不明顯了,也是因為n型負離子的“退讓”是越來越難的。耗盡型的是事先做出一個導通層,用柵極來加厚或者減薄來控制源漏的導通。但這種管子一般不生產,在市面基本見不到。所以,大家平時說MOS管,就預設是增強型的。

        

  4、左右對稱

  圖示左右是對稱的,難免會有人問怎麼區分源極和漏極呢?其實原理上,源極和漏極確實是對稱的,是不區分的。但在實際應用中,廠家一般在源極和漏極之間連線一個二極體,起保護作用,正是這個二極體決定了源極和漏極,這樣,封裝也就固定了,便於實用。我的老師年輕時用過不帶二極體的MOS管。非常容易被靜電擊穿,平時要放在鐵質罐子裡,它的源極和漏極就是隨便接。

        

  5、金屬氧化物膜

  圖中有指示,這個膜是絕緣的,用來電氣隔離,使得柵極只能形成電場,不能通過直流電,因此是用電壓控制的。在直流電氣上,柵極和源漏極是斷路。不難理解,這個膜越薄:電場作用越好、坎壓越小、相同柵極電壓時導通能力越強。壞處是:越容易擊穿、工藝製作難度越大而價格越貴。例如導通電阻在歐姆級的,1角人民幣左右買一個,而2402等在十毫歐級的,要2元多(批量買。零售是4元左右)。

        

  6、與實物的區別

  上圖僅僅是原理性的,實際的元件增加了源-漏之間跨接的保護二極體,從而區分了源極和漏極。實際的元件,p型的,襯底是接正電源的,使得柵極預先成為相對負電壓,因此p型的管子,柵極不用加負電壓了,接地就能保證導通。相當於預先形成了不能導通的溝道,嚴格講應該是耗盡型了。好處是明顯的,應用時拋開了負電壓。

        

  7、寄生電容

  上圖的柵極通過金屬氧化物與襯底形成一個電容,越是高品質的MOS管,膜越薄,寄生電容越大,經常MOS管的寄生電容達到nF級。這個引數是mos管選擇時至關重要的引數之一,必須考慮清楚。Mos管用於控制大電流通斷,經常被要求數十K乃至數M的開關頻率,在這種用途中,柵極訊號具有交流特徵,頻率越高,交流成分越大,寄生電容就能通過交流電流的形式通過電流,形成柵極電流。消耗的電能、產生的熱量不可忽視,甚至成為主要問題。為了追求高速,需要強大的柵極驅動,也是這個道理。試想,弱驅動訊號瞬間變為高電平,但是為了“灌滿”寄生電容需要時間,就會產生上升沿變緩,對開關頻率形成重大威脅直至不能工作。

       

  8、如何工作在放大區

  Mos管也能工作在放大區,而且很常見。做映象電流源、運放、反饋控制等,都是利用mos管工作在放大區,由於mos管的特性,當溝道處於似通非通時,柵極電壓直接影響溝道的導電能力,呈現一定的線性關係。由於柵極與源漏隔離,因此其輸入阻抗可視為無窮大,當然,隨頻率增加阻抗就越來越小,一定頻率時,就變得不可忽視。這個高阻抗特點被廣泛用於運放,運放分析的虛連、虛斷兩個重要原則就是基於這個特點。這是三極體不可比擬的。

       

  9、發熱原因

  Mos管發熱,主要原因之一是寄生電容在頻繁開啟關閉時,顯現交流特性而具有阻抗,形成電流。有電流就有發熱,並非電場型的就沒有電流。另一個原因是當柵極電壓爬升緩慢時,導通狀態要“路過”一個由關閉到導通的臨界點,這時,導通電阻很大,發熱比較厲害。第三個原因是導通後,溝道有電阻,過主電流,形成發熱。主要考慮的發熱是第1和第3點。許多mos管具有結溫過高保護,所謂結溫就是金屬氧化膜下面的溝道區域溫度,一般是150攝氏度。超過此溫度,MOS管不可能導通。溫度下降就恢復。要注意這種保護狀態的後果。