編譯 TensorFlow 的 C/C++ 介面
TensorFlow 的 Python 介面由於其方便性和實用性而大受歡迎,但實際應用中我們可能還需要其它程式語言的介面,本文將介紹如何編譯 TensorFlow 的 C/C++ 介面。
安裝環境: Ubuntu 16.04 Python 3.5 CUDA 9.0 cuDNN 7 Bazel 0.17.2 TensorFlow 1.11.0
1. 安裝 Bazel
-
安裝 JDK
sudo apt-get install openjdk-8-jdk
-
新增 Bazel 軟體源
echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add - 複製程式碼
-
安裝並更新 Bazel
sudo apt-get update && sudo apt-get install bazel
-
ofollow,noindex">點此檢視 Bazel 官方安裝指南
2. 編譯 TensorFlow 庫
-
進入原始碼根目錄,執行
./configure
進行配置。可參考 官網 -> Build from source -> View sample configuration session 設定,主要是 Python 的路徑、CUDA 和 CUDNN 的版本和路徑以及顯示卡的計算能力可點此檢視 。以下是我的配置過程,僅供參考。
You have bazel 0.17.2 installed. Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3.5 Found possible Python library paths: /usr/local/lib/python3.5/dist-packages /usr/lib/python3/dist-packages Please input the desired Python library path to use.Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with Apache Ignite support? [Y/n]: n No Apache Ignite support will be enabled for TensorFlow. Do you wish to build TensorFlow with XLA JIT support? [Y/n]: n No XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: n No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: n No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 9.0]: Please specify the location where CUDA 9.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: Do you wish to build TensorFlow with TensorRT support? [y/N]: n No TensorRT support will be enabled for TensorFlow. Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with. You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1]: Do you want to use clang as CUDA compiler? [y/N]: n nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: n No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: n Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See .bazelrc for more details. --config=mkl# Build with MKL support. --config=monolithic# Config for mostly static monolithic build. --config=gdr# Build with GDR support. --config=verbs# Build with libverbs support. --config=ngraph# Build with Intel nGraph support. Configuration finished 複製程式碼
- 進入 tensorflow 目錄進行編譯,編譯成功後,在 /bazel-bin/tensorflow 目錄下會出現 libtensorflow_cc.so 檔案
C版本: bazel build :libtensorflow.so C++版本: bazel build :libtensorflow_cc.so 複製程式碼
3. 編譯其他依賴
-
進入 tensorflow/contrib/makefile 目錄下,執行
./build_all_linux.sh
,成功後會出現一個gen資料夾 -
若出現如下錯誤 /autogen.sh: 4: autoreconf: not found ,安裝相應依賴即可
sudo apt-get install autoconf automake libtool
4. 測試
- Cmaklist.txt
cmake_minimum_required(VERSION 3.8) project(Tensorflow_test) set(CMAKE_CXX_STANDARD 11) set(SOURCE_FILES main.cpp) include_directories( /media/lab/data/yongsen/tensorflow-master /media/lab/data/yongsen/tensorflow-master/tensorflow/bazel-genfiles /media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/protobuf/include /media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/host_obj /media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/gen/proto /media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/nsync/public /media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/eigen /media/lab/data/yongsen/tensorflow-master/bazel-out/local_linux-py3-opt/genfiles /media/lab/data/yongsen/tensorflow-master/tensorflow/contrib/makefile/downloads/absl ) add_executable(Tensorflow_test ${SOURCE_FILES}) target_link_libraries(Tensorflow_test /media/lab/data/yongsen/tensorflow-master/bazel-bin/tensorflow/libtensorflow_cc.so /media/lab/data/yongsen/tensorflow-master/bazel-bin/tensorflow/libtensorflow_framework.so ) 複製程式碼
- 建立回話
#include <tensorflow/core/platform/env.h> #include <tensorflow/core/public/session.h> #include <iostream> using namespace std; using namespace tensorflow; int main() { Session* session; Status status = NewSession(SessionOptions(), &session); if (!status.ok()) { cout << status.ToString() << "\n"; return 1; } cout << "Session successfully created.\n"; return 0; } 複製程式碼
- 檢視 TensorFlow 版本
#include <iostream> #include <tensorflow/c/c_api.h> int main() { std:: cout << "Hello from TensorFlow C library version" << TF_Version(); return 0; } // Hello from TensorFlow C library version1.11.0-rc1 複製程式碼
- 若提示缺少某些標頭檔案則在 tensorflow 根目錄下搜尋具體路徑,然後新增到 Cmakelist 裡面即可。
獲取更多精彩,請關注「seniusen」!
