生成式藝術和演算法創作05-Tessellation

- ofollow,noindex">生成式藝術和演算法創作01-概述
- 生成式藝術和演算法創作02-隨機和噪聲
- 生成式藝術和演算法創作03-混沌和分形
- 生成式藝術和演算法創作04-規則系統
Tessellation(密鋪/鑲嵌/平面填充)或稱細分曲面(subdivision surface),是指用一些較小的表面填滿(tiling)一個較大的表面而不留任何空隙。在數學上,Tessellation 可以推廣到更高的維度,稱為空間填充。

A wall sculpture in Leeuwarden celebrating the artistic tessellations of M. C. Escher
在幾何學中,兩塊相鄰 tiles 的邊界叫做 edge,三個或更多 tiles 的交點叫做 vertex。平面密鋪分為規則和不規則兩種,規則鑲嵌即重複組合一種或多種不同的圖形,具有周期性的重複模式。由正多邊形組成的可以分為正鑲嵌、半正鑲嵌(Demiregular Tessellation)和不均勻半正鑲嵌和複合多邊形鑲嵌等種類。

image
通過兩個或多個凸規則多邊形對平面進行細分,使得相同順序的相同多邊形圍繞每個多邊形頂點稱為半規則 Tessellation,或者有時稱為阿基米德曲面細分:

有 14 個單向 Tessellation 是三個常規和八個半規則鑲嵌的有序組合:

有規律的填充形成的圖案,可分為 17 組。你沒有看錯,是總共只有 17 組,詳細的介紹請見 Wallpaper group ,感覺有必要單開一篇來專門研究。

缺乏重複圖案的密鋪稱為非週期平鋪(Non-periodic/Aperiodic)。非週期平鋪使用一些較小的表面來填滿一個較大的表面而不留任何空隙,但由於每一片的形狀皆不相同,以致無法形成重複圖案。
另外,也存在非歐幾里得空間的密鋪,如正七邊形鑲嵌、七階三角形鑲嵌等。

在三維成像中也會使用 Tessellation 快速生成 3D 成像的小三角形。可以使用 GPU 通過 Programmable Tessellator 實現細分曲面,使得渲染物件的表面和邊緣更平滑,物件呈現更為精細。
(寫到這裡只有一個感受:需要完全重修幾何學和計算機圖形學……)

Ref
- Tessellation - Wikiwand
- Tessellation -- from Wolfram MathWorld
- Tessellation
- Wallpaper group - Wikiwand
二次搬運 Wolfram 的 Reference:
- Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 105-107, 1987.
- Bhushan, A.; Kay, K.; and Williams, E. "Totally Tessellated." http://library.thinkquest.org/16661/ .
- Britton, J. Symmetry and Tessellations: Investigating Patterns. Englewood Cliffs, NJ: Prentice-Hall, 1999.
- Critchlow, K. Order in Space: A Design Source Book. New York: Viking Press, 1970.
- Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., pp. 60-63, 1989.
- Gardner, M. Martin Gardner's New Mathematical Diversions from Scientific American. New York: Simon and Schuster, pp. 201-203, 1966.
- Gardner, M. "Tilings with Convex Polygons." Ch. 13 in Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 162-176, 1988.
- Ghyka, M. The Geometry of Art and Life. New York: Dover, 1977.
- Kraitchik, M. "Mosaics." §8.2 in Mathematical Recreations. New York: W. W. Norton, pp. 199-207, 1942.
- Lines, L. Solid Geometry, with Chapters on Space-Lattices, Sphere-Packs, and Crystals. New York: Dover, pp. 199 and 204-207 1965.
- Pappas, T. "Tessellations." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 120-122, 1989.
- Peterson, I. The Mathematical Tourist: Snapshots of Modern Mathematics. New York: W. H. Freeman, p. 75, 1988.
- Radin, C. Miles of Tiles. Providence, RI: Amer. Math. Soc., 1999.
- Rawles, B. Sacred Geometry Design Sourcebook: Universal Dimensional Patterns. Nevada City, CA: Elysian Pub., 1997.
- Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 75-76 and 78-82, 1999.
- Vichera, M. "Archimedean Polyhedra." http://www.vicher.cz/puzzle/telesa/telesa.htm .
- Walsh, T. R. S. "Characterizing the Vertex Neighbourhoods of Semi-Regular Polyhedra." Geometriae Dedicata 1 , 117-123, 1972.
- Weisstein, E. W. "Books about Tilings." http://www.ericweisstein.com/encyclopedias/books/Tilings.html .
- Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 121, 213, and 226-227, 1991.
- Williams, R. The Geometrical Foundation of Natural Structure: A Source Book of Design. New York: Dover, pp. 35-43, 1979.
- Woo, M.; Neider, J.; Davis, T.; and Shreiner, D. Ch. 11 in OpenGL 1.2 Programming Guide, 3rd ed.: The Official Guide to Learning OpenGL, Version 1.2. Reading, MA: Addison-Wesley, 1999.