1. 程式人生 > >P4213 【模板】杜教篩(Sum)

P4213 【模板】杜教篩(Sum)

\(\color{#0066ff}{題 目 描 述}\)

給定一個正整數\(N(N\le2^{31}-1)\)

\(\begin{aligned} ans_1=\sum_{i=1}^n\varphi(i) \end{aligned}\)

\(\begin{aligned} ans_2=\sum_{i=1}^n \mu(i) \end{aligned}\)

\(\color{#0066ff}{輸 入 格 式}\)

一共T+1行
第1行為資料組數T(T<=10)
第2~T+1行每行一個非負整數N,代表一組詢問

\(\color{ #0066ff }{ 輸 出 格 式 }\)

一共T行,每行兩個用空格分隔的數ans1,ans2

\(\color{#0066ff}{輸入樣例}\)

6
1
2
8
13
30
2333    

\(\color{#0066ff}{ 輸 出 樣 例}\)

1 1
2 0
22 -2
58 -3
278 -3
1655470 2

\(\color{#0066ff}{數 據 範 圍 與 提 示}\)

\(N \leq 2^{31}\)

\(\color{#0066ff}{題 解}\)

前置知識1 : 狄利克雷卷積

對於任意函式f,g,有\(\begin{aligned} h(i) = \sum_{d|i}f(d)*g(\frac{n}{d})\end{aligned}\)

h即為f和g的卷積

常用函式

1、\(i(n) = 1\)

2、\(id(n) = n\)

3、\(e(n)=\left\{\begin{aligned}1\ \ \ n = 1 \\ 0 \ \ \ n \neq 1\end{aligned}\right.\)

4、尤拉函式\(\varphi(n)\)

5、懵逼鎢絲函式\(\mu(n)=\left\{\begin{aligned}1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n = 1 \\ (-1)^k \ \ \ n由k個不同質數相乘得到\\ 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 其它情況\end{aligned}\right.\)

6、\(\sigma(n)=n的約數和\)

7、\(d(n)=n的約數個數\)

常用卷積

1、\(i*\mu = e\)

2、\(e*a=a\)

3、\(\mu * id= \varphi\)

4、\(i*id=\sigma\)

5、\(i*i=d\)

6、\(i*\varphi=id\)

杜教篩

已知\(f(i)\)

用來求\(\begin{aligned}\sum_{i = 1}^n f(i)\end{aligned},n\leq 2^{31}\)

定義\(h(i)=(f*g)(i)=\begin{aligned}\sum_{d|i}f(d)*g(\frac{i}{d})\end{aligned}\)

\(\displaystyle\sum_{i=1}^nh(i)\)

用定義展開

\(=\displaystyle\sum_{i=1}^n\sum_{d|i}g(d)f\left(\frac i d\right)\)

d的範圍也是【1.n】的,所以改成列舉d,找它的倍數,這個式子是在求和,找全了就行

\(=\displaystyle \sum_{d=1}^ng(d)\sum_{d|i}f\left(\frac i d \right)\)

把後面變一下

\(=\displaystyle \sum_{d=1}^ng(d)\sum_{i=1}^{\left\lfloor\frac n d \right \rfloor}f( i)\)

然後

\(=\displaystyle \sum_{i=1}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right)\)

所以

\(\displaystyle \sum_{i=1}^nh(i)=\sum_{i=1}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right)\)

有一個好像沒用的式子

\(\displaystyle g(1)S(n)=\sum_{i=1}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right)-\sum_{i=2}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right)\)

上式把後面移項就成恆等式了

我們把右面第一項用剛剛的結論換走

\(\displaystyle g(1)S(n)=\sum_{i=1}^nh(i)-\sum_{i=2}^ng(i)S\left(\left\lfloor\frac n i\right\rfloor\right)\)

這。。是個遞迴式

就沒了

對於S的遞迴,用數列分塊

一般的h和g都很好求(構造)

對於本題來說

\(i*\varphi=id\)

所以對於\(\varphi\)

\(\displaystyle S(n)=\frac{n*(n+1)}{2}-\sum_{i=2}^nS\left(\left\lfloor\frac n i\right\rfloor\right)\)

剛剛有\(i*\mu=e\)

所以

\(\displaystyle S(n)=1-\sum_{i=2}^nS\left(\left\lfloor\frac n i\right\rfloor\right)\)

沒了。。。

把前\(4*10^6\)的東西線性篩一下

最後的複雜度\(O(n^{\frac{2}{3}})\)不會證

#include <bits/stdc++.h>

typedef long long LL;

const int maxn = 4e6;
const int maxx = 4e6 + 10;

int in() {
    char ch; int x = 0, f = 1;
    while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    while(isdigit(ch)) x = (x << 1) + (x << 3) + (ch ^ 48), ch = getchar();
    return x * f;
}

bool vis[maxx];
LL phi[maxx];
int mu[maxx], pri[maxx], tot; 
std::map<int, LL> P; 
std::map<int, int> M;

void predoit() {
    phi[1] = mu[1] = 1LL;
    for(int i = 2; i <= maxn; i++) {
        if(!vis[i]) {
            pri[++tot] = i;
            phi[i] = i - 1;
            mu[i] = -1;
        }
        for(int j = 1; j <= tot && i * pri[j] <= maxn; j++) {
            vis[i * pri[j]] = true;
            if(i % pri[j] == 0) {
                phi[i * pri[j]] = phi[i] * pri[j];
                mu[i * pri[j]] = 0;
                break;
            }
            else {
                phi[i * pri[j]] = phi[i] * (pri[j] - 1);
                mu[i * pri[j]] = -mu[i];
            }
        }
    }
    for(int i = 2; i <= maxn; i++) {
        phi[i] += phi[i - 1];
        mu[i] += mu[i - 1];
    }
}

LL workphi(int now)
{
    if(now <= maxn) return phi[now];
    if(P.count(now)) return P[now];
    LL ans = now * (now + 1LL) / 2;
    for(int i = 2, lst; i <= now; i = lst + 1) {
        lst = now / (now / i);
        ans -= 1LL * (lst - i + 1LL) * workphi(now / i);
    }
    return P[now] = ans;
}

int workmu(int now)
{
    if(now <= maxn) return mu[now];
    if(M.count(now)) return M[now];
    int ans = 1;
    for(int i = 2, lst; i <= now; i = lst + 1) {
        lst = now / (now / i);
        ans -= workmu(now / i) * (lst - i + 1);
    }
    return M[now] = ans;
}

int main() {
    predoit();
    for(int T = in(); T --> 0;) {
        int n = in();
        printf("%lld %d\n", workphi(n), workmu(n));
    }
    return 0;
}